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ABSTRACT

This thesis was motivated by a study performed by Commander Submarine Force

Pacific (COMSUBPAC) of detection rates for a random search model.
COMSUBPAC's study concluded that the probability of nondetection to time t,

PND( 0), was not of the form exp (.y t), as believed by many. The target motion

model used for that study was a new and interesting model, therefore this investigation
began by analyzing that model. This investigation discovered that the density of

targets for COMSUBPAC's motion model was not uniform over the search area, which
might lead to a nonexponential form for PND( t), To lend support to the hypothesis
that a uniform distribution of target position can lead to an exponential form of
PND( t) the target motion was altered to achieve a uniform target density. The same
basic target motion was used because of its Laherent advantages over other target
motion models. Three different types of boundary reflection patterns were analyzed for
their ability to create a uniform target density. Two of those patterns were successful,
but only one was suitable for fuirther analysis. Support for the hypothesis was
achieved when the PND( t) using this new uniform density target motion model was
found to be of exponential form, It was also discovered that the exponential detection
rates for this new simulation model were very close to the detection rates predicted by
B. 0. Koopman's random search formula.
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1. DESCRIPTION OF HENZE'S NODE MODEL

A. INTRODUCTION

It is a very difficult, if not impossible, computational problem to calculate the

probability of detection or mean time to detection for a stationary searcher against a

target moving 'randomly', although some limited successes have been made.

B. 0. Koopman made several assumptions about the random target motion [Ref. 11 and

achieved his well known result that the time to detection is an exponentially distributed

random variable, JN. Eagle has analyzed a Brownian motion target and round a

closed form solution for the probability of nondetection to time t, PND( t ), which

involved an infinite sum of Bessel functions [Ref. 2: page 44]. He also discovered a

more simple solution in exponential form as t becomes arbitrarily large, Previous

thesis students at the Naval Postgraduate School (NPS) have examined popular motion

models, such as the diffusing target and random tour target, using computer

simulations [Refs, 3,4]. They concluded, for these target motion models, that the

PND( t ) had an approximate exponential form,

A new target motion model was recently introduced by J. Henze [Ref. 5]. Henze

reported that Monte Carlo simulation using this model provided a time to detection

which was distributed as a Pareto1 random variable, rather than the exponential

random variable many would have expected. We begin investigating this rnteresting

and surprising result with a description of the Henze target motion model.

B. DESCRIPTION OF HENZE'S NODE MODEL

1. Search Area A

The target is constrained to a circular search area A. In many studies a

square or rectangular region is specified, perhaps because boundary reflections (which

are easier to model with linear area boundaries) are required. Hlenze also uses a square

search area in his studies, but identical results can also be achieved with a circular

search area. A circular area is radially symmetric and eliminates any target motion

problems which might occur in the corners. For theoretical studies such as this, a

"1The Pareto distribution considered in this thesis and LIcnzr 's study has a
probability distribution function, Q.x), of the form: ttx)-= y( + y7x,' •Ii 1), whcr6 y is
the detection rate, R is the detection radius, A is the search area, v is the target speed,
and y"- 2R v;A. P - 2 in both studic~., where I is the shape parameter.
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circular area is more appropriltc and will be the only geometry considered. In order to

further simplify the geometry, A will be equal to n, which means that the search area

radius, RA, is equal to one.

2, Motion of the Target

The target moves randomly from point to point (or node to node) in a straight

line at constant speed over the search area A (see Figure 1.1 ). The nodes are chosen

randomly and independently from a bivariate uniform distribution of the search region

AI

Figure 1.1 [Icnzc's Simulation Geometry.

A. The motion is very simple and requires no reflections of'farea boundaries. There is

also no need to estimate coeflicients such as a diffusion costant or a rate of course

change For the target, as required in other popular motion tmodels [Rel's. 3,41. Thuis the

l len.-e target motion model appears very attractive for operational analysis of the

search problem.

3, Target Starting Position

*The target's starting pusiton is uniformly diqtributed over the search region A

and is selected independently fronm the same distribution as the target niudes.

4., ''rget Velocity v

I niess otherwise noted the target velocity v used in each simulati )n is always

eq nal to one searth :trea radius per 111it of' time I. This is a utic velo.•itv with v = I,

which allows the results to be stated equivalently in terms ol' distance tia\-elcd or tinm

ttSIc l



5. Searcher Location

The setcher is stationary for the entire search period, but for each repetition

of the simulation the searcher's location is selected independently from the same

bivariate uniform distribution as the target nodes,

6. Detection

The searcher haF a deterministic detection capability over a disk of radius R

(see Figure 1.1 ). The probability of detection inside this disk is equal to one, and

therefore the searr.her is said to have a 'cookie cutter' sensor with detection range R

(Ref. 6: page 2.1]. Detection occurs the first time that the target enters the searcher's

detection disk; that i.s, %-hen the distance between the target and the searcher is less

than R. In order to minimize the consideration of edge effects, the detection range R

should be considerably smaller than RA. Since RA - I, R is the ratio of detection

radius to search area radius.

C. DESCRIPTION OF PROGRAM NODE

1. General

Program NODE, found in Appendix A, is a Monte Carlo simulation of the

search scenario described above. Arbitrarily, the stationary platform is called the
Ibearcher', and the moving platform the 'target', where the target can be thought of as

a submarine and the, searcher as a sonobouy. NODE is coded in FORTRAN and is

designed for use at the NPS. NODE uses the external subroutine LRND in the Non-

International Mathematics and Statistics Library (NONIMSL) to generate uniform

random variables and it uses the GRAFSTAT graphics system. NODE is an event

driven simulation, which is much more efficient than a time step simulation. Instead of

stepping through incremental time steps and then updating the situation, NODE

evaluates the situation at the end of each target leg and analytically solves the

equations for detection during the leg. As opposed to time stepping, this path is not

approximated by a series of points. Therefore detection may occur exactly at the

detection disk boundary, and it is not possible for the simulated target path to jump

across the edge of the detection disk without achieving detection. This more elegant

process also eliminates the potential inaccuracies involved with determining a time step

increment. The program will also run much faster than a time step simulation, This

eliminates the reed to terminate the repetition after some TMAX which would also

introduce inaccuracies.

12
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2. Inputs
- Radius of detection disk R

* Target speed Y
0 Number of replications (NREP)

3. Functioning of the Program
a. At the beginning of each replication, the initial starting position of the

target and the searcher is drawn from a bivariate uniform distribution
over the area A.

b. The target's next position is drawn independently from the same
distribution. These two points form a line for the search leg.

c. In order to determine if a detection has occurred on the search leg the
equations for the search leg line

"(Y'Ynew)*(xold-xnew)" (X'xnew)*(Yold'ynew)
and for the searcher's detection disk

(X'Xsearcher) 2 + (Y'Ysearcher) 2 " R2

are solved simultaneously for the coordinate (X,Y) of intersection where
(Xoldyold), (XnewYnew) are coordinates for the beginning and ending
search leg respectively and (Xsearcher,Ysearcher) are coordinates for the
searcher.

d. If only an imaginary solution to the system of equations exists then
there has been no detection and a new target position is drawn.

e. If there is a solution then it must be determined if the solution exists
between the old and new target positions. If it does not then again
there has been no detection and a new target position is drawn. If it
does then a detection has occurred.

f. After each target node the time to detection counter is updated.
g. After each detection the replication terminates and the process continues

until the specified number of replications is reached.
4. Output

For each replication the simulation output is the total time t which it took for

the searcher to make a detection, This data is then read into GRAFSTAT from which
graphs of PND( t) may be drawn and analyzed.

13
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i1. ANALYSIS OF HENZE'S NODE MODEL

A. INTRODUCTION
Koopman [Ref. 1: p. 6] argued that PND( t ) is exp(-2R vt /A), where v is the

speed of the random search, R is the detection range, and A is the size of the area in
which the random search is performed. Henze's results suggest that PND( t ) is not
exponential as suggested by Koopman, Instead it is more closely represented by a
Pareto distribution. This apparent inconsistency is curious and requires some further
investigation. This chapter will delve into Henze's search model and try to discover the
reasons for the disagreement between Henze's results and Koopman's theories.

B. INVESTIGATING THE DEPENDENCE ON SEARCHER'S POSITION
1. Boundary Effect

As mentioned earlier, at the start of each repetition Henze chose the
stationary searcher's position (Xsearcher , Ysearcher) from a bivariate uniform
distribution where

(Xsearcher) 2 + (Ysearcher) 2 < Ai7.

Selecting the searcher's position from this distribution allows part of the searcher's
detection disk to be outside the search area boundary if

(Xsearcher)2 + (ysearcher)2 > (ý,/?n)- R) 2.

When this situation occurs, the time to detection will be greater than otherwise, since
the size of the detection disk is effectively reduced. By changing Henze's model to
select the searcher's position from the bivariate uniform distribution where

(Xsearcher) 2 + (Ysearcher) 2 < (,/Thn)- R) 2

a closer fit to the exponential distribution of PND( r ) is achieved, although the Pareto
distribution still provides the best fit. All further analysis of Henze's modal includes
this revision.

2. Radial Effect

a. Pareto and Exponential Chi-Square Valses
In order to investigate how PND( t ) varies with respect to searcher

location, simulations were performed where the stationary searcher position was not
selected from a uniform distribution, but was fixed at one point. Then for different

14
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simulation runs, this point was moved along the radius of the search area. By

comparing the Chi-Square goodness-of-fit values assuming that the times to detection
are distributed exponentially with the Chi-Square values assuming a Pareto

distribution, we are able to determine how the fit of the PND( t ) varies with searcher

location. Remembering that the smaller Chi-Square value the better the fit, Figurc 2.1

shows that the Pareto distribution is a better fit near the area boundaries, while the

exponential distribution gives the best fit towards the center. From Figure 2.1, with

R-=0.01, it appears that the crossover point where the best fit distribution changes
occurs approximately at 0.75. Then the fraction of the search area where the
exponential distribution provides the best fit is (0.75)2-0.56, approximately equal
areas.

Note also from Figure 2.1 that when the searcher position is <0.75 the

Pareto distribution provides a fit almost as good as that of the exponential distribution,

However, when the searcher is > 0.75 the Pareto fit is much better than the exponential

fit. When the searcher's position is uniformly distributed about the search area, the

extremely poor exponential fit near the area boundaries (totaling almost half of the

entire area) helps explain why the Pareto distribution provided the best overall fit in

Henze's model.

b. Steady State Target Density with no Searcher

Some insight can be gained by examining the steady state distribution of

targets following the Henze motion model. Figure 2.2 is a scatter and radial empirical

density plot of those positions when the searcher has been removed. Note that the

scales for the X and Y axes are not identical in this scatter plot and others in this

study. By observation it appears that the distribution of targets is not uniform.

Instead, a target is more likely to be found in the center of the search area as opposed

to the edge. By measuring the radial distance of each of the points from the center and

weighting each point by the inverse of its radial distance we are able to find the density

of targets as a function of distance from the center. Figure 2.2 distinctly shows that

this density of targets is not uniform across the search area, which is a requirement of
Koopman's random search formula. This observation could help explain Henze's
results.

C. EXAMINING PREDICTED DETECTION RATES

Another interesting feature of Henze's model is that his detection rate does not

approximate the detection rate which Koopman's random search formula would

•4, 15
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predict, even when the searcher is at the center of the area where the detection rate is

close to exponential. As mentioned earlier, Koopman's random search model predicts
a detection rate of 2R v /A. The Henze target motion simulation included 10,000

iterations 10,000 at each searcher detection radius R. A plot of the PND( I ) vs time

(or distance) traveled for values of R from 0.001 to 0.03 is illustrated in Figure 2.3

Notice that the scale of the Y axis is logarithmic so exponential distributions will plot

as straight lines and the search detection rate is the negative slope of these curves. The

curves of Figure 2.3 are almost linear which implies that this distribution is

approximately exponential. In his study, Henze notes that the Pareto approaches the

exponential distribution as the Pareto parameter 1 - 00. Table I provides a

comparison of Henze's target model detection rate determined by least squares fitting

of the simulation data with Koopman's random search detection rate, Note that the

TABLE I

COMPARISON OF DETECTION RATES FOR RANDOM SEARCH AND
HENZE'S MODEL

Rt.cti ando'. S larch Ratesadius Deteo Rates Simula.tion -(DetS3 on RS

0.001 6.366E.4 13,25E-4 2.08

0,003 1.910E-3 4,279E.3 2.24

0,006 3.820E-3 8,223E,3 2.15

0.01 0,006366 0.013955 2.19

0.03 0.01910 0.04186 2.19

detection rate for Henze's model is more than twice that predicted by Koopman, This
might be explained by remembering that the target density for Henze's model was
concentrated in the center of' the search area, precisely where the searcher is located.
This should result in more detections per unit time; i.e., a higher detection rate,

It appears as if a nonuniform steady state target distribution may be a primary
reason why Henze's model does not produce random search results, Our next task will
be to modify Henze's target motion to achieve a uniform target distribution and
determine if the random scarci. formula holds in that situation,

18
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III. RESTORING THE UNIFORM DISTRIBUTION OF TARGETS

A. INTRODUCTION
Prior thesis students [Refs. 3,] have shown that with diflusion and random tour

target motion models, Koopman's random search formula is a reasonable
approximation, It would be useful to make the same connection using Henze's motion
model, since his model has the important advantages which have been previously
discussed. The benefits of his model, such as simplicity and the use of operationally
meaningful variables, should be retained in any revised model, But this revised model
must have one feature which Henze's model is lacking, It must have a uniform steady
state distribution of targets in order to meet Koopman's assumptions of random
search. This assumption of Koopman's is more explicitly stated by Washburn
[Ref. 6; page 2.6],

We have seen that the target density in Henze's model was concentrated in the
center of the search area. This central tendency of targets is caused by the manner In
which target turnpoints (nodes) are selected, By using Henze's method of target
motion, the probability that a target path will ever reach the search area boundary is 0.
Whereas in a model which permits boundary reflections (such as the diffusing and
random tour models examined in [Refs, 3,4] ) there are many target paths which
intersect the search area boundary. Therefore, in order to reduce the central tendency
of targets in Henze's model, it may help to include boundary reflections, This chapter
will investigate different types of target reflection to restore a uniform target
distribution to Henze's model, There is no target involvement with the searcher in this
chapter,

B. PERFECT REFLEC'TION MODEL
1, Description of a Perfect Reflection Path

A perfect boundary reflection (also known as specular reflection) is one in
which the angle of incidence is equal to the angle of reflection with respect to the
boundary normal, This is illustrated in Figure 3.1. If the only influence on target
motion in a circular area is perfect boundary reflection, then these angles are equal for
every reflection, Figure 3.2 shows several possible target paths for different reflection
angles. It is interesting to note that if the target does not pass through the center of A
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on its first leg, it never will. Additionally, the minimum distance from any leg to thc

center is the same for all legs.
2. Determining Target Density

Whenever we determine a target density in this study it is important to ensure

that the target is in steady state. By allowing the target to travel some 'long' distance,
say 50 area radii (50RA), we assume that the target distribution is in steady state, if a
steady state distribution exists. After the target is in steady state, we record its

Figure 3.1 Perfect Reflection Geometry,

position and then repeat this exercise for many targets. Eventually the empirical
density is developed.

3, Targot Starting Position Is Uniformly Distributed on the Area Circumference
a. Creating the Target Alotion,

To create this perflect reflection motion, uniformly choose any two points
betwecn 0 and 2M on the circumference of' the search area. Then let these two points

define the first target leg and aliow perfect reflection to deterrminc the subsequent
target nvntion. This motion should have more of the target density at the area
boundaries than I lenie's model due to these boundary reflections.

b. Analy, hag Target Density

(I) l'arget Siolv Time i.s Dcterni'uisic, Figures 3,3a and 3.3b display the

scatter plots and empirical density plots of target positions for five Jifferent stopping

S~21
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Figure 3,2 P'ossiblle Iaths for a Perfect Rcflccting T[rget,
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times These stop times correspond to a path length of' 50RA to 52 RA and should bc

long enough to achieve a steady state distribution, if such a distribution exists. Note

from Figures 3,3a and 3,3b that the target density is dependent on the target stopping

time. As the stopping time varies from 50RA to 52 RA the distribution completes one

full cycle. Note that on every even multiple of RA the density is concentrated on the

boundary and on every odd multiple of RA the density is concentrated at the center.

This process is apparently cyclic and does not have a steady state distribution. This

fteature makes this target motion unacceptable for our purposes.

(2) Target Stop Time is Random. The same perfect reflection simulation is

executed but this time for each reprtition the target stop time is uniformly selected

between 50RA and $2 RA. When the stopping time is uniformly selected between one

cycle of the target steady state distribution, a mean value of the stopping time cycle is

produced which should generate a pseudo-stationary condition. Figure 34 illustrates

that the target density for this pseudo.-stationary condition is still not uniform, which

requires us to investigate another motion model with a different set of conditions.

4. Target Starting Position is Uniformly Distributed In the Search Area

a. Creating the Target Motion

Now the target starting position is uniformly distributed over the entire

search area, and its initial direction of motion is uniformly distributed between 0 and

2n. When the target Intersects the boundary, its next leg is determined by perfect

reflection.

b. Analyzing Target Density

Figure 3.5 illustrates that when the pereectly reflecting target starts

uniformly in the entire search area and chooses a uniform direction to begin searching,

the uniform target density is apparently reclaimed. Now th,•t we have found the

distribution which we were seeking it would be interesting to see if this target

distribution may be achieved by any other target motion.

C. UNIFORM REFLECTION MODEL

1. Description of Uniform Reflection

A uniform boundary tofleetion is one in which the target's scatter angle 0 is

not dependent on the angle ao' incidence but is uniformly distributed betwecn .,T, 2 and

t,'2 from the boundary normal as suggested in Figure 3,6. Figure 3.7 is a sample path

for this typi of target motion.
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2. Connection betwveen Uniform Reflection Model and Henze's Node Model

Another way to describe this type of target motion is very similar to Henze's

original node model. If each target turnpoint is randomly selected uniformly between 0

and 2n on the circumference of the search area, instead of choosing a uniform

Figure 3,6 Uniform Reflection Geometry.

reflection angle 0, then we have a situation identical to uniform reflection motion. It is

a simple transrormation of variables to show that selecting a uniform reflection angle 0
is equivalent to selecting a uniform point a on the search area circuLIMIrence. To

prove this consider Figutire 3,6. Since A OAR, is isosceles Angle OI1,A -Angle OABR-0

and a = 20 . If 0 is a random variable and is distributed between -n'2 and n.2 or

nocationally, 0- U[. -n,2 , ,2 then

a - 20 Uf .n , =I o- 1 0, 2n 1,

where a is a random variable defining the turnpoint on the search area circumference,

3, Target Starting Position Is Uniformly Distributed on the Circumference

a. Creating the Target Alstion

Since having shown the equivalence of uniform boundary reflections and
selection of uniform circurl'erctnce nodes, tfic creation of" this target motion is relatively

easy. By randomly choosing an u - Vi1) , 2n I we may find the (X,Y) coordinate of

the target turnpoint on the circum[ferencc of the search area %%ith R:\ I by

X sin (U)

Y cos(U)
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* Then 'or each target leg a new valuc For a is chosen and uniform reflection target

motion is generated. A target density may be crcated by repeating this motion for
many targets and recording the target's position after the target is in steady state.

b. Analyzing Target Density

Figure 3,8 shows empirical density and scatter plots for steady state targets
starting on the circurnference with uniform reflection motion, Notice that this target
motion concentrates the target density on the area boundaries. Analysis performed by

Figure 3.7 Target Paths for Uniform Reflection.

Prof. E, B. Rockower of the Naval Postgraduate School derived the target density as a
function of distance From the center or the area ror this type of uniform reflection
target motion. I lis calculations are inCIluded in Appendix B. The Fitted line in Figure
3.S is ai plot of his density flunction and shows (when appropriately scaled so that both
Eli. curves have a Liensitv of one on the area boundary) very close agreement with the

empirically derived density from this Finiulation data.
4. Target Starting Position is Uniformly Distributted In the Search Area

a. C7reating the Target M$otiona

Thetaret tars uifomlyin the search area and its initial direction or
motion is uniformly distributed between 0 and 2n, When the target intersects the
boundary its next leg and all subsequent legs are determined by unilorni rellections ais
ilcNsribcd above.
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b. Analyzing Target Density

Figure 3.9 is the empirical density and scatter plots for a steady state

unifbrm reflecting target starting uniformly within the entire search area. This density

has the same shape as the density in Figure 3.8 which would be expected since the

target loses all memory of where it has been once it encounters a boundary. Therefore,
unlike the perfect reflection geometry (Figure 3.5) when the target also starts uniformly

about the entire search area, a uniform distribution of targets is not obtained. There is

at least one other reflection method which should be investigated for completeness.

D. DIFFUSE REFLECTION MODEL
1. Description of Diffuse Reflection

A diffuse reflecting target is similar to a uniform reflecting target. The
difference is in the density function of the reflecting angle 0, Whereas 0 - Uf-I,'2,n/2)

for a uniform reflecting target, a diffuse target's angle of reflection has a density

function of the form

f 10))- (1,12) COS( 0)

where the range of 0 is also -n,'2 to n/2. This reflection scheme is illustrated in

Figure 3,10 Difruse Reflection Geometry.

Figure 3,10.
The most important characteristic of diffuse reflection is that after a particle

undergoes such a reflection, the particle flux density (number of particles per time per

32
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length) is constant in every direction, Consider Figurc 3.11 whcre a dilfuse rcflection

occurs anywhere along a small length 6. The probability of a reflected particle crossing

line "a" is equal to the probability density on line "a" or approximately

8/2

f (1,/2) COS (0) dO 812
-6/2

whcre the limits of integration are the allowable reflection angles expressed in radians.
"Trhcreolre the flux density through line "a", which is the probability of being reflected
through line "a" per length of "a", is (&'2)'6 - 112. Similarly, the probability of a
reflected particle passing through line "b" is approximately

a+6,'2
f (1/2) COS (0) dO 1 (1/2) 8 COS (a).

But the length of line "b" is 6 COS (a), so the flux density through line "b" is also 112.

lit.

Figure 3.11 IDillb~se Particle Reflection.

An alternate wvay to view these results is to assume that the line "S" is a ditTusc light

source. Then the intensity or" the lighlt would be constant independent of' where tile

observer stalILds. A more complete desLcription of'diffuase rellc~tiin is I*Ound inl [c[W' 71.
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2. Creating Diifuse Reflecticn Motion

The target starts uniformly in the search area and the direction which it

initially chooses to move untl it encounters a boun¢ar) is chosen uniformly. Then the
reflection angle of the target, e, is chosen from the cosine distribution, When the
target intersects a boundary again, another value for the random variable 0 is selected

and the process continues.
3. Analyzit Target Density

As shown in Figure 3,12 the density of targets appears uniform, Additional
experiments were performed with the target's starting position varying from the center

of the area (0.0) to the circumference (1.0). The target densities from these
simulations, shown in Figure 3,13, are uniform for each starting position, The
conclusion which may be drawn from these results is that any deterministic target

starting position or distribution of starting positions achieves a uniform steady state
distribution,
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IV. APPLICATION OF UNIFORM DISTRIBUTION OF TARGETS TO
PND(T)

A. INTRODUCTION
In the last chapter we found that a uniform distribution of targets can be

achieved, independent of where the target begins its motion, as long as the target is
performing diffuse reflections, We also noted that perfect reflections will provide a
uniform distribution of targets if the target's starting position is uniformly distributed
in the entire search area, There were no conditions which provided a uniform target
density for the uniform reflecting target, In this chapter we will analyze one of the two
uniform density target motion models, calculate PND( t ) and determine if the model

approximates Koopman's random search model,

B. CHOOSING THE MOTION MODEL
As mentioned, we have investigated target motion models with three different

reflection patterns, and with the right initial conditions two of these models can create
a uniformly distributed target density, One of Koopman's assumptions of random
search is that the distribution of targets must be uniform, Following this assumption it
would appear that the choice of which reflection pattern to use for analysis does not
matter as long as it meets the uniform condition but, as we will see, this is not entirely
true, By referring to Figure 3.2 of possible perfect reflection paths, we can see that if
the searcher is located in the center of the search area with detection radius R, there
will be many target paths for which the searcher will not make a detection, It would
not matter how long the simulation ran since the first reflection angle and target leg
determines if the searcher will make a detection. Either the target gets detected on the
first leg or not at all, Therefore we have shown that a uniform target density, as is the
case with the perfect reflecting target, may be a necessary but not a sufficient condition
for random search, With the perfect reflecting and uniform target motionsteliminated,
we will concentrate all further analysis on the diffuse reflecting target.

C. COMPARING THE EXPONENTIAL TO THE PARETO DISTRIBUTION
FIT OF PND(T)
llenze found, and this study verified, that the Pareto distributicn provided a

better lit than the exponential distribution for the time to detection t, whcn 1-icnze's
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target motion model was used. The next logical step is to use our diffuse reflecting

target and again compare the Pareto and exponential distributions to the compute'

generated PND( t ) using the Chi-Square goodness-of-fit test, As before, we examine

the fit for various searcher locations. The results of this experiment are found in

Figure 4.1 and suggest the following conclusions:

1) the exponential distribution provides a better fit than the Pareto distribution
irrespective of the searcher's location

2) the quality of the exponential fit is also independent of the searcher's position

3) the exponential fit for the diffuse reflecting target is at least an order of
magnitude better than the exponential fit for Henze's target motion in Figure
2.1.

This strongly suggests that Henze's results are due to the nonuniform target density of

his motion model.

D. PROBABILITY OF NONDETECTION TO TIME T
1. For all Time t

Again we will perform an experiment as in Chapter II by comparing the
detection rate for the simulated target with Koopman's predicted detection rate using

random search, but this time we use the diffuse reflecting target, Recall that when we

used Henze's model, the simulation data did not provide a good estimate of

Koopman's random search model.

The difl¼se reflecting target motion model experiment included 10,000

iterations at each searcher detection radius R, A plot of the PND( t ) vs time (or

distance) traveled for values of R from 0.001 to 0.03 is illustrated in Figure 4.2 Notice

that the scale of ihe Y axis is logarithmic, therefore exponential distributions will plot ,
as straight lines. The curves of Figure 4.2 are very nearly linear and the search

detection rate is the negative slope of these curves, Table 2 provides a comparison of

diffuse reflecting target detection rate determined by least squares fitting of the

simulation data with Koopman's random search detection rate. The simulation data

suggests the following conclusions:

a) diffuse refleizng target PND( t ) gives a reasonable estimate of Koopman's
random search formula

b) the estimate improves as R decreases, which implies that the diffuse reflecting
target approximates random search in the limit as R -. 0 or when R < < RA

c) the observed detection rate uoc:; not consistently under or over estimate the
detection rate predicted by Koopman which implies that there are no
consistent inaccuracies with the model.
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2, As Timet -40

For the case of a diffusing target (as opposed to diffuse reflections), James N.

Eagle noted that for small t, the decrease in PND( t ) is faster than exponential,
implying that the curves are not linear as t -+ 0 [Ref. 2: page 47]. Figure 4.3 is an

enlargement of the upper left corner of Figure 4.2. Notice that the phenomenon which

Eagle observed is not present in this target motion model. No explanation of this

TABLE 2
COMPARISON OF DETECTION RATES FOR RANDOM SEARCH AND

HENZE'S REVISED MODEL WITH DIFFUSE REFLECTIONS

,(S)tQ- S
Radius K, 8.an f Se.arch rSiulation -

t)etec on etes etection Rates RS

0,003 1.910E-3 1.863E-3 0.98

0,006 3,820E-3 3.782E.3 0.99

0.01 0,006366 0,006435 1.01
0.03 0.01910 0.01935 1.01

0.05 0,03183 0.03310 1.04

0.10 0.06366 0,06854 1.08

0.15 0,09549 0.10729 1.12

0.20 0,12732 0.15152 1.19

effect is offered here except to remark that the absence of this effect permits the diffuse

reflecting target model to more closely approximate the exponential distribution and
provide a better tool for analysis.

*
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V. CONCLUSIONS

This thesis was motivated by a study performed by COMSUBPAC which
concluded that PND( t ) did not have an exponential form, contradicting expectations
and some theory. In the process of investigating this problem, we discovered that the
target density for the COMSUBPAC model was not uniform, which is an assumption
made by Koopman in his development of the random search formula. Proceeding on
the assumption that the nonuniform target density was the cause of the nonexponrential
distribution, we began investigating ways to reclaim a uniform distribution of targets in
the COMSUBPAC model. The basic characteristics of the Henze model were retained
due to is desirable simplicity.

A diffuse reflecting target was found to provide the best reflecting scheme to
restore the uniform target density to the Henze model. An exponential PND( t ) was
achieved with this new motion model which, for detectors with a relatively small size,
very closely approximated the detection rates predicted by Koopman's random search

formula.

43



APPENDIX A
FORTRAN PROGRAM FOR REFLECTING TARGETS

1. DESCRIPTION OF THE VARIABLES

Alpha : Uniformly distributed random variable between 0 and 2x
Anormal : Angle of the surface normal at the given point
Beta : Uniformly distributed random variable between 0 and 2n
Detect : Array of times to detection
Detrng ' Definite detection range of the searcher
Dist : Distance between two points
Dscrmt : Discriminate from the solution to the simultaneous equations for

searcher's detection disk and target path
Fposit : Final position of target's leg
Iposit Initial position of target's leg
Nreps Number of repetitions for the search encounter
Secant Distance between lposit and Fposit or the length of the target's path
Target Coordinates of the searcher
Totdis Total distance traveled by the target
Unifrm : Uniform random number between 0 and 1
Velcty : Velocity of the target

2. FORTRAN PROGRAM 'NODE'
REAL FPOSIT(2),UNIFRM(9),IPOSIT(2),DETECT(9000),START(2),TARGET(2)

* TNPUT INI TI N

A ISTART EQ*. I FOR TARGET STARTING UNIFORMLY IN THE ENTIRE AREA.
* ISTAFT .NE. I FOR TARGET STARTING UNIFORMLY ON THE CIRCUMFERENCE
* OF THE SEARCH AREA

1STARTwO

* IREFLT a 0 FOR DIFFUSE TARGET REFLECTION
* IREFLT a 1 OR UNIFORM TARGET REFLECTION
* IREFLT z 2 FOR PERFECT TARGET REFLECTION
* IREFLT a 3 FOR HENZE TARGET MOTION

IREFLT=O

* NREPSa NUMBER OF REPETITIONS OF THE SEARCH

NREPSlO000
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*DETRNG: DEFINITE DETECTION RANGE OF THE SEARCHER O<DETRNG<1

DETRNGO .001

*VELCTY: VELOCITY OF THE TARGET

VELCTYml

P1=3.1415927
1X=10099
TARGET (1 =.0
TARGET (2) *O.0

BEGI REETIIONOF hSARC

DO 300 Iu1,NREPS
TOTDISNC

**ASTAS *ISH*INITAAL AARG~j

IF (ISTART .EQ. 1. ) THEN
SENTIRE AREA START

CALL SEARCH (START,IX)
CALL DSTNCE(START ,TARGET,DIST)
IF (DIST .LE. DETRNG) GO TO 200
CALL LRND(IX,UNIFRM,1,1PO)
ALPHAu2*PI*UNIFRH (1)
IPOSIT (1) START (1)+2*COS (ALPHA)
IPOSIT (2) STAR 2 +2*SIN (ALPHA)
FPOSIT I. uSTART (1) 2*COS (ALPHA)FPOSIT (2) STAR (2-2*SIN (ALPHA)
CALL DISCRM (IPOSIT,FPOSIT,TARGET,1.O,DSCRJ4T,A,E)
CALL INTSCT(DSCRMT,A,BS,T)
FPOSIT (1)*IPOSIT (2.) S* FPOSIT(1)-IPOSIT ()
FPOSIT (2) POSZT (2) +* (FPOSIT (2)-IPOSIT(2))
IPOSIT (1 ) START (1)
IPOSIT (2) START (2)

* ~~~HENZE MOTION MODEL
IF (IREFLT .EQ. 3) THEN CALL SEARCH (FPOSIT,IX)I-

ELSE
SUNIFORM CIRCUMFERENCE START

CALL LRND(IXIUNIFRM,1,1,O)
ALPHAu2*PI*UNIFRM (1)q
IPOSIT (1) .005 ALPHA)
IPOSIT (2) SIN (ALPHA)
IF (IREFLT .EQ. 0) THEN

SDIFFUSE REFLECTING TARGETN
CALL DIFUSE(IPOSIT,FPOSIT,IX,PI,TARGET)

ELSE
SPERFECT OR UNIFORM REFLECTING TARGET

CALL LRND(IX,UNIFRM,1,1,O)
ALPHA.2*PI*UNIFRM( 1)
FPOSIT(1) C05 (ALPHA)
FPOSIT (2) SIN (ALPHA)
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END IF
END I F

****TARGET SEARCH LOOP

100 CALL DSTNCE (IPOSIT,FPOSIT,SECANT)
CALL DISCRN (IPOSITFPOSIT,TARGET,DETRNGDSCRMkTAD)
IF (DSCRMT .LE. 0) THEN

***TARGET PATH DOES NOT INTERSECT SEARCHER'S DISK
TOTDISoTOTDI S*SECANT*VELCT'k
IF (IREFLT .EQ. 0) THEN

SDIFFUSE REFLECTING TARGET
IPOSIT(1 ) FPOSI T(1)
IPOSIT(2 ) FFOSI 1(2)
CALL DIFUSE(IPOSIT,FPOSZT,IX,P1,TARGET)

ELSE IF (IREFLT *EQ. 1) THEN
SUNIFORMI REFLECTING TARGET

CALL LRND(IX,UNIFRN,1,1,O)
ALPHA=2*PI*tJNIFRI( 1)
IPOSIT (1)=FPOSIT()
IPOSIT (2) uFPOSIT (2)
PPOSIT (1) COS (ALPHA)
FPOSIT (2) SIN (ALPHA)

ELSE IF (IREYLT .EQ. 2) THEN

SPERFECT REFLECTING TARGET
CALL RZFLCT (IPOSIT,FPOSIT)

SHENZ8 MOTION MODEL

ELSE IF (IREFLT .EQ. 3) THEN
IPOSITj(1) FPOSIT(1)
IPOSIT (2)FPST2
CALL SEARH(PITIX

END IF
ELSE

" THE TARGET PATH DOES INTERSECT THE SEARCHER'S DETECTION CIRCLE
BT NlECES AR L IIWEEN IPOI jANR*PSI*,********,

CALL INTSCT(DSCRMTA,BIS,T)
IF ((T .GE. 0) .AND. (T .LE. 1)) THEN

*THE TARGET PATH INTERSECTS THE SEARCHER'S DETECTION CIRCLE
BETEI IOSTRR*PýSIT

TCTDI STOTD IS+SECANT*T*VELCTY
GO TO 200

ELSE

*THE TARGET PATH INTERSECTS THE SEARCHER'S DETECTION CIRCLE
*BUT NOT BETWEEN IPOSIT AND FPC'SIT

UPAýNEW*P0 SITj0N~p~OALDISTANCE*TRANCELEDEED

TOTDIS=70TDI S+SECANT*VELCTY
IF (IREFLT .EQ. 0) THEN

DIFFUSE REF'.ECTINO TAFG(ET
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IPOSIT (1)=FPOSIT(1
IPOSIT (2,uFPOSIT (2
CALL DIFUSE(IPOSI~'.,FPOSIT,IX,PI ,TARGET)

ELSE IF (IREFLT .EQ. 1) THEN
****UNIFORM REFLECTING TARGET

CALL LRND(IXUNIFRM,1,1,O)
ALPHAu2*PI*UNIFRM(l2)
IPOSIT (1) FPOSIT (1)IPOSIT (2) FPOSIT (2)
FPOSIT (1) COS (ALPIHA)
FPOSIT 2"" S:N (ALPAA)

ELSE IF (IREFLT .ZQ.* 2) THEN
SPERFECT REFLECTING TARGF71

CALL REFLCT (IPOSIT,FPOSIT)
SHENZE MOTION MODEL

ELSE IF (IREFLT .EQ. 3) THEN
IPOSIT (1)mFPOSIT (.
IPOSIT (2)=FPOSIT (2)
CALL SEARCH (FPOSIT I

END IF
END IF

END IF
GO TO 100

200 DETECT(I)uTOTDIS
300 CONTINUE

WRITE (69 45O0 (DETECT(L),LUI,NREPS)
40FORMAT(1008Y. )

500 STOP
600 END

SUBROUTINE DSTNCE (POINTA,POINTB,DIST)
REAL PON%1,ON%

10 RETURN
20 END

FIND RADOMCO-ORRINATE WITHIN THE SEARCH AREA

SUBROUTINE SEARCH(POSIT, IX)
REAL POSIT(2),PITARGET(2),UNIFRM(2)
PIu3.12415927
TARGET~i 3 O

10 CALL SRND(IX,IUNIFRM,2,1,O)
POSIT (2.) UNIFRMj(1)*2..1
POSIT (2) UNIFRM (2) *2-.3
CALL DSTNCE(POSIT ,TARGETR.ADIUS)

IF (RADIUS .GT. 1) GO TO 10
20 RETURN
30 END
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SUBROUTINE DISCRM(IPOSITS.FPOSIT,TARGETDETRNGDSCRMT,A,B)
REAL ZPOSIT(2),FPOSIT(2),TARGET(2)
Au(IPOSIT(l)-FPOSIT(l))**2+(IPOSIT(2)-FPOSIT(2))**2

1 (FPOSIT 2) -IPOSIT(2) )*(IPOSIT (2)-TAGT 2)
Cm IPOSIT (1)-TARGET (1)) *2+

1 (IPOSXT (2) -TARGET() **2-DETRNG**2
DSCRMT=B**2-4*A*C

20 FETURN
30 9ND

*DETERMINES POINT Of INTERSECTION OF

SUBROUTINE INTSCT(DSCRMT,A,BIS ,T)
S: (:-+SQRT (DSCRMT) )/2/A
T( -B-S RT (DSCRMT /2/A

10 RETURN
20 END

SUBROUTINE DIFUSE(IPOSIT,FPOSIT,IXP1,TARGET)
REAL IPOSIT(2),FPOSIT(2),UNIFRM(2),TARGET(2),PI
CALL LRN4D(IXXUNIFPJ41,21,O)
ANORMLxATAN( POSIT(fl/IPOSTl)

BETAUANOFRiL+ASIN(2*UNIFRM(1 )-1)
YOSITQ1) IPOSIT (1)+2*COS (BETA)
F*P0SITk2)mIPOSIT (2) +2*SIN (BETA)

CALL D:SCRM(IPOSIT,FPOSIT,TARGET,1.0,DSCRMT,II,B)
CA\LL INTSCT(DSCRZIT,AB,S,T)
FPOSIT1IawIPOSITl 1 S* FPOSITW1 IPOSIT1

CRoSITý2POSIT(OSIT( SI(2MIOSIT(2) )+FOST()*FPS(2

SUBRUTIE RFLC(IPSIT FPOSIT(1)+
REAIPOSIT (2),FP0SIT(2))* T()

U ~PERPlaSQRT ((IPOSIT( 1)-FPOSITI. l))**2+(IPOSIT(2)-FPUSIT(2))**2)
PERP2=S RT (POSIT (1) *~2+FPOs IT( 2)**2)
THETAwACOS(DOT/ (PERPl*PERP2))
IF (CROSS .GT. 0) THEN

VluFPOSIT(2)*SIN(THETA) -FPOSIT(1)*COS(THETA)
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V2=-(FPOSIT(1)*SIN(THETA)+FPOSIT(2)*COS(TWETA))
ELSE

Vl:-(FPOSIT( ) *COS (THETA)+FPOSZT(2')*SIN(THETA))
V2aFPOSIT(1)*Sl 0NTEA)-FPOSIT(2)*C0S( THTA)

END IF
? uVl **2+V2** 2
S2.-2*(FP0SIT(1)*Vl+FPOSIT(2 )*V2)
IPOSIT 1 aFPOSIT~f
IPOSIT 2 *FPOSIT2

(1) IT~FPOSITM (1*Q2V/1/
FPOSIT (2) FPOSIT (2)+ 2*V2/ 1

20 RETURN
30 END
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APPENDIX B
ANALYTIC MODEL OF UNIFORM REFLECTING TARGET DENSITY

E. B. Rockower of the Naival Postgraduate School, Monterey, California, derived

the target density for a uniform reflecting targct, His initial assumptions were that
1) the target starts uniornily on the circumference of a circular area and
2) the target density is equal to one on the area boundary,

Refer to Figure B.1, where RA is the radius of the search area and the uniform

Figure B, I Uniform Reflection Geometry,

reflection angle is 0 -U [ -n,,2 , n-12 1, H~e calculates as a function of r the target

destp (1), by assuming that the litne density oft'trgets on the snialler circle between
.0 and 0 is proportional to area density of tntgets, *Then the lrine density of the smialler

circle betwcron -0 ind 0 is

artcsir(r'?R.\)

f ( I,1r) do - (2rn) AR CS I N(r: ItA).
-arcsin(r'RA)

Tlhei clhre it follows that the ai-ea density would tic

p 01 = (2 R,\.-(n r)) A lkCS IN (rR.R\)
't'o linrd the iLurget density at the cente ivcrw take thti limit of p ( r) as r 0 I

p (11 0) 2 r
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